Contemporary and Future Metallic DES: What do we Expect More from Ongoing PCI Trials?

Alan C. Yeung, MD Li Ka Shing Professor of Medicine Chief, Division of Cardiovascular Medicine Stanford University School of Medicine

Disclosure Statement of Financial Interest

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

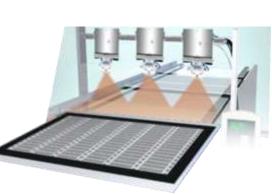
Affiliation/Financial Relationship

- Grant/Research Support
- Scientific Advisory Board
- Executive Physician Council

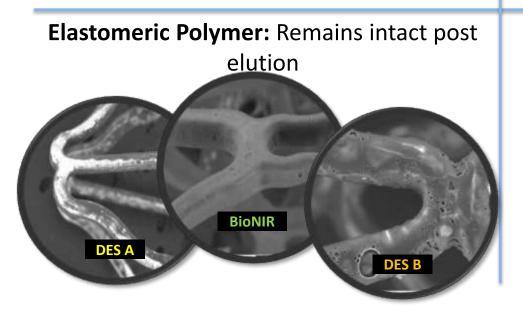
Company

- Abbott Vascular, Medtronic
- Medtronic, Abbott Vascular
- Boston Scientific Corp

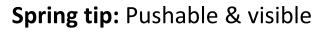
To Further Improve DES Outcomes


- Make the stent struts thinner
 - Bioabsorbable polymers
 - Eliminate the polymer
 - Eliminate the stent ?
 - Shorten DAPT need

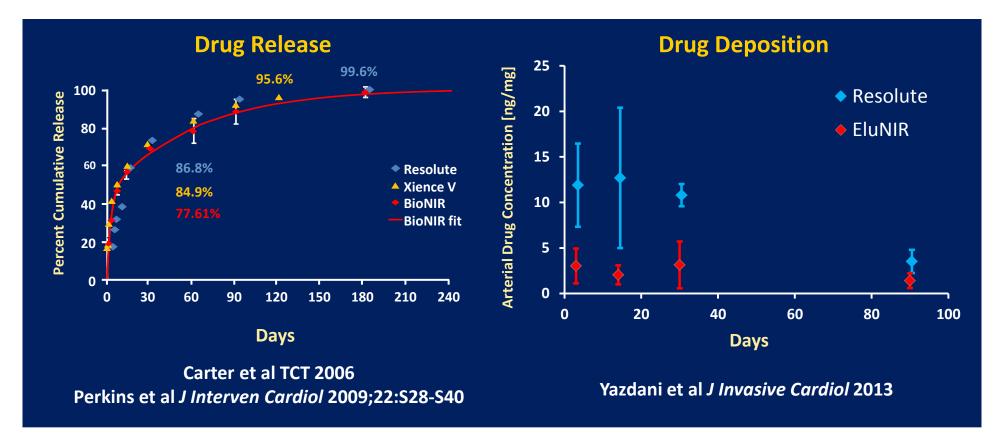
Focus on New Stent Systems

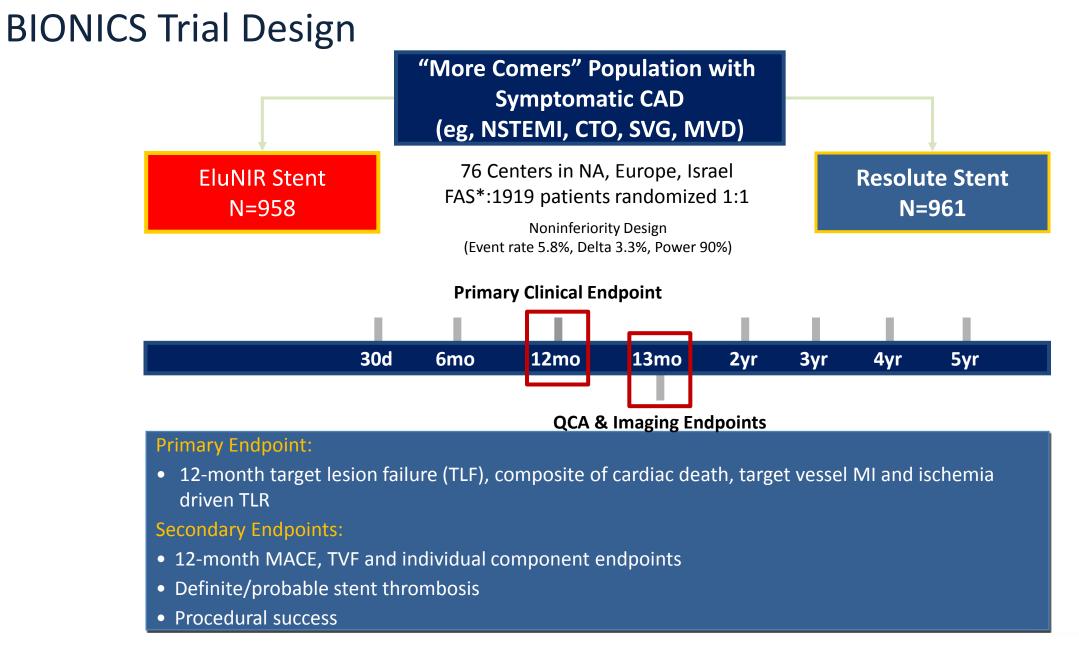


EluNIR (Cordis/Cardinal Health)


Flat manufacturing: Quality & cost efficiency

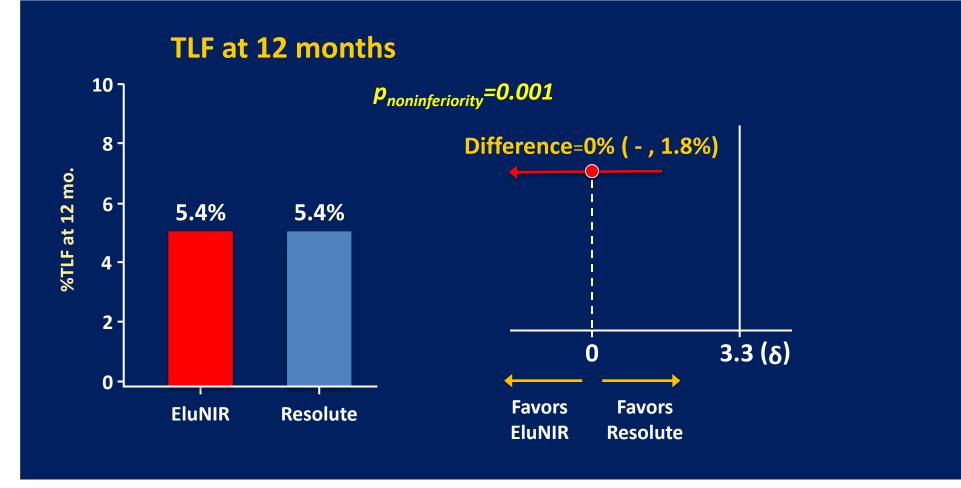
- 80µm CoCr Wizecell design
- Ridaforolimus high therapeutic index drug


Variable strut width/ frequency: Uniform dosing

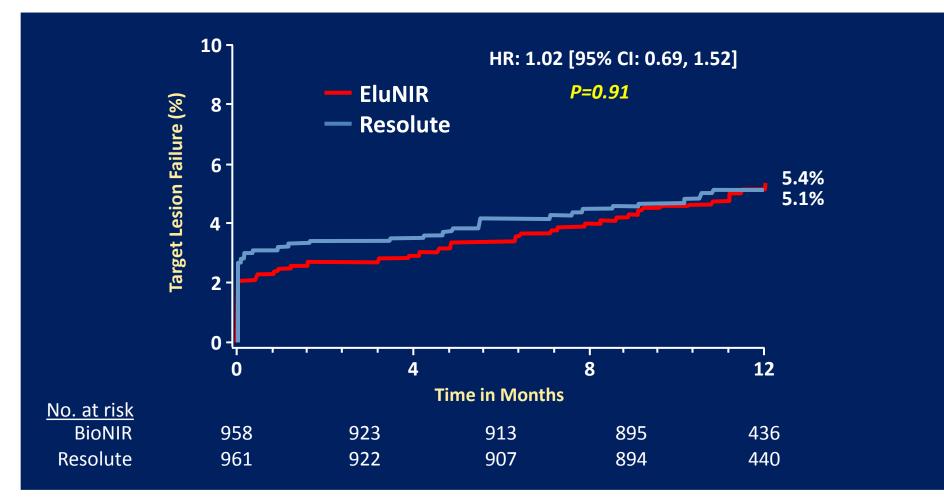


Medinol Ltd., Tel Aviv, Israel

EluNIR Pharmacokinetics


*FAS= Full Analysis Set

Procedural Outcomes


	EluNIR N=958 patients, 1268 lesions	Resolute N=961 patients, 1268 lesions	<i>p</i> value				
Device Success	98.0%	99.4%	0.001				
Lesion Success	99.9%	99.8%	0.99				
Procedure Success	97.6%	97.3%	0.67				
<i>Device success:</i> final in-stent residual QCA diameter stenosis of <50% using the assigned device only and without a device malfunction <i>Lesion success</i> : final in-stent residual QCA diameter stenosis of <50% using any percutaneous method <i>Procedure success:</i> final in-stent QCA diameter stenosis of <50% using the assigned device and/or with any adjunctive							

devices, without the occurrence of cardiac death, Q wave or non-Q wave MI, or repeat revascularization of the target lesion during the hospital stay

BIONICS Primary Endpoint

BIONICS TLF to 12 Months: KM Curves

BIONICS Stent Thrombosis

	EluNIR (N=958)	Resolute (N=961)	<i>P</i> value
Stent Thrombosis		, , , , , , , , , , , , , , , , ,	
Definite/Probable	0.4% (4/921)	0.6% (6/927)	0.53
Definite	0.4% (4/921)	0.5% (5/926)	0.74
Any Stent Thrombosis	0.4% (4/921)	0.8% (7/928)	0.37
Timing of Event			
Acute ST	0.1% (1/920)	0.1% (1/926)	0.99
Sub-Acute ST	0.3% (3/921)	0.3% (3/927)	0.99
Late	0.0% (0/920)	0.2% (2/927)	0.16

Kandzari et al. Circulation 2017 12 Month DAPT Adherence: 75.1% BioNiR, 75.9% Resolute

BIONICS Angiographic and IVUS Outcomes

	Ridaforolimus- Eluting Stent (n=85 patients, 105 lesions)	Zotarolimus-Eluting Stent (n=73 patients, 96 lesions)	<i>P</i> value
Angiographic Results			
Late Lumen Loss (mm)			
In-Stent	0.22 ± 0.41	0.23 ± 0.39	0.85, 0.004 for noninferiority
In-Segment	0.17 ± 0.42	0.15 ± 0.38	0.58
Binary Restenosis			
In-Stent	8.9 (9/101)	7.5 (7/93)	0.73
In-Segment	10.7 (11/103)	7.5 (7/93)	0.43
IVUS Results			
Neointimal Hyperplasia (%)	8.1 ± 5.8	8.9 ± 7.8	0.95
Neointimal Volume (mm ³)	17.4 ± 21.8	17.2 ± 17.3	0.33
New Stent Malapposition (%)	3.7 (2/54)	0 (0/51)	0.50

IVUS was performed in 55 patients (61 lesions) in the Ridaforolimus group and in 56 patients (60 lesions) in the zotarolimus group Kandzari et al. Circulation 2017

	Target Les	ion Failure at	t 1 Year by Sub	groups	
Subgroups	12-Month TLF Rate n/N (%)		Relative Risk [95% Cl]		<i>P</i> value
	EluNIR	Resolute			
Overall	50/926 (5.4%)	50/930 (5.4%)	1.00 [0.69, 1.47]	┝╾╪╾╾┥	
Medically Treated Dia	abetes				
Yes	22/277 (7.9%)	21/264 (7.9%)	1.00 [0.56, 1.77]		0.5
Νο	28/649 (4.3%)	29/666 (4.4%)	0.99 [0.60, 1.65]		0.5
Acute Coronary Synd	lrome (ACS)				
ACS	19/380 (5.0%)	20/363 (5.5%)	0.91 [0.49, 1.67]	├──	0.39
No ACS	31/546 (5.7%)	30/567 (5.3%)	1.07 [0.66, 1.75]	⊢	0.03
Sex					
Male	40/725 (5.5%)	41/762 (5.4%)	1.03 [0.67, 1.57]	⊢ ┣━ <mark><mark>╞──</mark>┥</mark>	0.45
Female	10/201 (5.0%)	9/168 (5.4%)	0.93 [0.39, 2.23]	 	0.45
Age					
>=65 Year	34/433 (7.9%)	27/441 (6.1%)	1.28 [0.79, 2.08]		
<65 Year	16/493 (3.2%)	23/489 (4.7%)	0.69 [0.37, 1.39]		0.16
Region					
North America	22/420 (5.2%)	26/402 (6.5%)	0.81 [0.47, 1.41]		0.23
Outside of N. Am.	28/506 (5.5%)	24/528 (4.5%)	1.22 [0.72, 2.07]		
					T
			0.0		2.5
				avors Favors	
Interaction n value: Gail Sim			_	luNIR Resolute	

Interaction p value: Gail-Simon test for qualitative interactions (interaction between the treatment and the subgroup variable)

November 28, 2017

Medinol, Ltd. Marina Tikhonov-Demishtein VP Regulatory Affairs Kiryat Atidim, Bldg. 8 POB 58165 Tel Aviv 6158101, Israel

Re: P170008

Trade/Device Name: EluNIR[™] Ridaforolimus Eluting Coronary Stent System Filed: March 13, 2017 Amended: May 1, 2017; July 31, 2017; August 28, 2017; November 20, 2017 Product Code: NIQ

Dear Marina Tikhonov-Demishtein:

The Center for Devices and Radiological Health (CDRH) of the Food and Drug Administration (FDA) has completed its review of your premarket approval application (PMA) for the EluNIR[™] Ridaforolimus Eluting Coronary Stent System. This device is indicated for improving coronary luminal diameter in patients with symptomatic heart disease due to de novo lesions ≤30mm in length in native coronary arteries with reference diameters of 2.50mm to 4.25mm. We are pleased to inform you that the PMA is approved. You may begin commercial distribution of the device in accordance with the conditions of approval described below.

Disruption in US:


Same Clinical/Angiographic Outcomes at 1/2 or 1/3 of the Price !!

BIOFLOW V RCT (n=1334)

Orisiro 60 um CoCr bioabsorbable PLLA-based SES vs. Xience 82 um CoCr durable fluoropolymer-based EES Primary Endpoint: Target Lesion Failure @ 1 Year

(2:1 randomization, powered for noninferiority)

Kandzari DE et al. Lancet 2017;390:1843-52

Ultra-thin (<70 μm) vs. Thicker Strut 2nd Gen DES 10 RCTs, 11,658 pts, 3 ultra-thin strut DES: Orsiro (60 μm), MiStent (64 μm) and BioMime (65 μm)

1-Year Target Lesion Failure

	Ultra-th	in	2 nd Gener	ration			% Weight
Study	Events	Ν	Events	N		RR (95% CI)	(D+L)
Orsiro BIOFLOW II BIOFLOW IV BIOFLOW V BIORESORT BIOSCIENCE ORIENT PRISON IV SORT OUT VII D+L Subtotal (I-squared = 0.09	19 20 52 47 69 6 6 48 % p=0.881)	298 354 884 1169 1063 250 165 1261	12 9 41 53 70 4 8 58	154 176 450 1173 1056 122 165 1264		$\begin{array}{c} 0.82 \ (0.40, 1.69) \\ 1.10 \ (0.50, 2.43) \\ 0.65 \ (0.43, 0.97) \\ 0.89 \ (0.60, 1.32) \\ 0.98 \ (0.70, 1.37) \\ 0.73 \ (0.21, 2.59) \\ 0.75 \ (0.26, 2.16) \\ 0.83 \ (0.57, 1.22) \\ 0.85 \ (0.71, 1.01) \end{array}$	4.83 4.08 15.07 16.37 22.84 1.58 2.25 17.26 84.29
I-V Subtotal MiStent DESSOLVE-III D+L Subtotal (I-squared = NA, I-V Subtotal BioMime	40	703	45	695		0.85 (0.71, 1.01) 0.85 (0.71, 1.01) 0.88 (0.57, 1.35) 0.88 (0.57, 1.35) 0.88 (0.57, 1.35)	13.92 13.92
Merit-V D+L Subtotal (I-squared = NA, I-V Subtotal All Stents D+L Subtotal ($I^2 = 0.0\%$, $p = 0$ I-V Subtotal	.88)	170	6	86		0.42 (0.13, 1.38) 0.42 (0.13, 1.38) 0.42 (0.13, 1.38) 0.42 (0.13, 1.38) 0.84 (0.72, 0.99) 0.84 (0.72, 0.99)	1.79 1.79 100.00
Driven by less TV-I CD or ID-TLR	MI with n	o diffeı	rences in	Favo	0.1 1 rs Ultra-thin	10 Favors 2 nd Generation	

Bangalore S and Stone GW, submitted

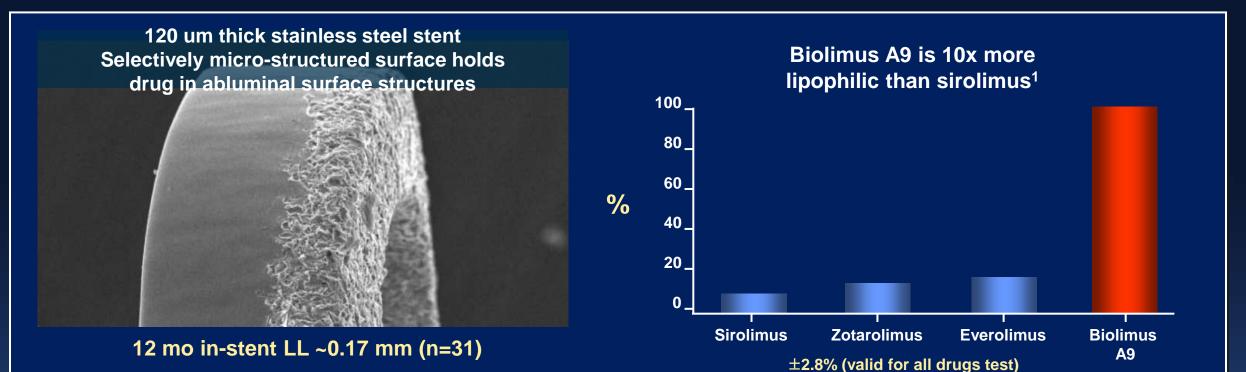
Ultra-thin (<70 µm) vs. Thicker Strut 2nd Gen DES

10 RCTs, 11,658 pts, 3 ultra-thin strut DES:

Orsiro (60 µm), MiStent (64 µm) and BioMime (65 µm)

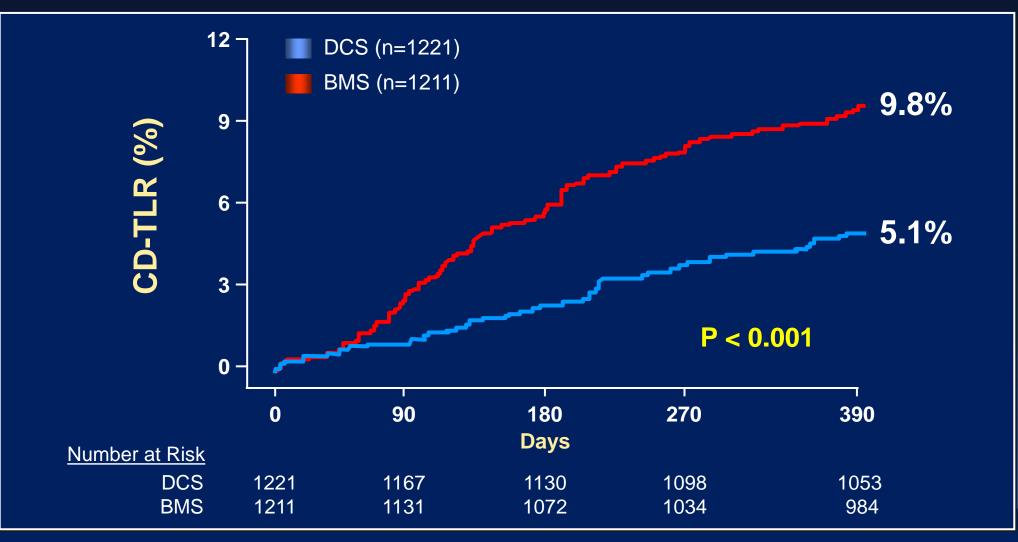
1-Year Stent Thrombosis (def/prob)

	Ultra-th	in	2 nd Genera	ation			% Weight
Study	Events	Ν	Events	N		RR (95% CI)	(D+L)
Orsiro							
BIOFLOW II	0 3	298	0	154		0.52 (0.01, 26.04)	0.78
BIOFLOW IV	3	354	0	176		3.48(0.18, 67.38)	1.37
BIOFLOW V	4	884	3	450		0.68 (0.15, 3.03)	5.36
BIORESORT	5 29	1169	6	1173		0.84 (0.26, 2.74)	8.53
BIOSCIENCE	29	1063	35	1056		0.82 (0.50, 1.35)	49.59
ORIENT	0	250	0	122		0.49 (0.01, 24.59)	0.78
PRISON IV	1	165	2	165		0.50 (0.05, 5.51)	2.08
SORT OUT VII	11	1261	20	1264		0.55 (0.26, 1.15)	22.19
D+L Subtotal (I-squared = 0.0%	, <i>p</i> =0.956)					0.74 (0.51, 1.07)	90.69
I-V Subtotal					ϕ	0.74 (0.51, 1.07)	
MiStent							
DESSOLVE-III	5	703	6	695		0.82 (0.25, 2.70)	8.53
D+L Subtotal (I-squared = NA, µ	o = NA					0.82 (0.25, 2.70)	8.53
I-V Subtotal	,					0.82 (0.25, 2.70)	
BioMime					T		
Merit-V	0	170	0	86		0.51 (0.01, 25.49)	1.79
D+L Subtotal (I-squared = NA, µ	o = NA					0.51 (0.01, 25.49)	1.79
I-V Subtotal	,					0.51 (0.01, 25.49)	
All Stents							
D+L Subtotal ($I^2 = 0.0\%$, $p = 0.9$	99)					0.74 (0.53, 1.05)	100.00
I-V Subtotal	~,					0.74 (0.53, 1.05)	
					.1 1 10		
				Favo	rs Ultra-thin Favors	2 nd Generation	


Bangalore S and Stone GW, submitted

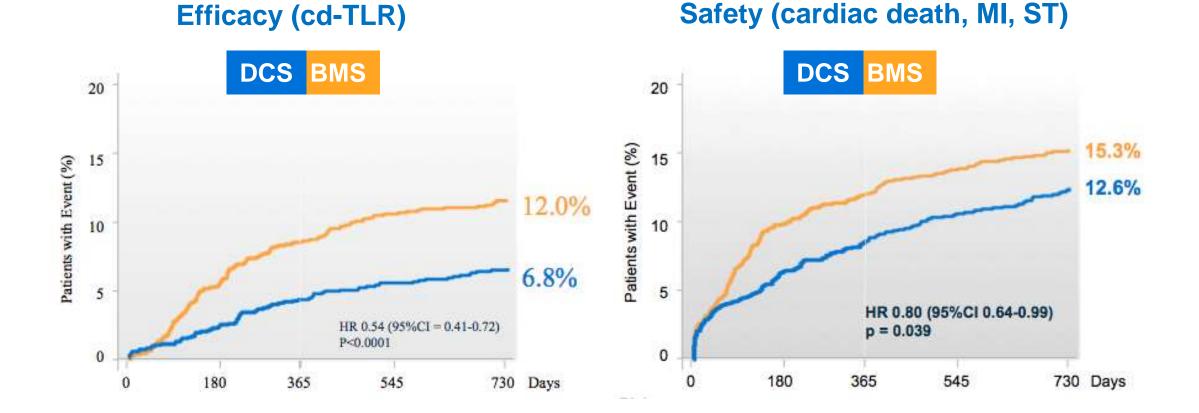
Disruption :

How thin can we go without losing radial strength and radio-opacity?


BioFreedom Drug Coated Stent (DCS)

Potential Advantages:

- Rapid drug transfer to vessel wall (98% within one month²)
- Avoid possible polymer-related adverse effects
- Safe to shorten DAPT?


Leaders Free: Primary Efficacy Endpoint (Clinically-Driven TLR)

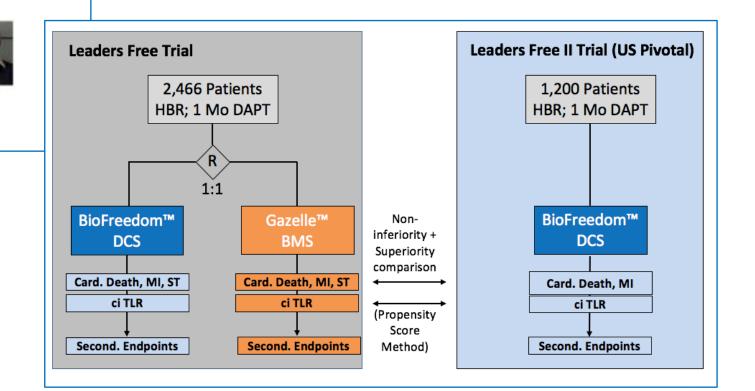
Urban P et al. *NEJM* 2015;373:2038-47

Efficacy and Safety Endpoints at 2 Year

2 year FU was obtained at 730 days + 60 days

Cardiovascular Research Foundation

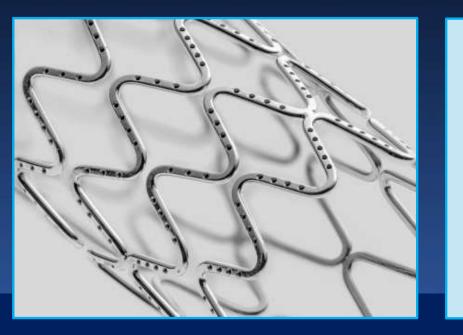
Garot P et al. J Am Coll Cardiol 2017;69:162–71

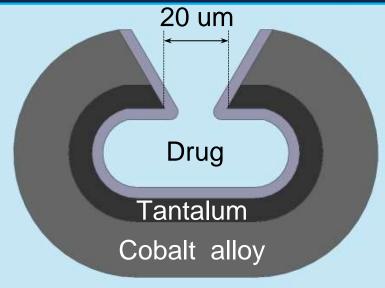

LEADERSFREEI US Pivotal Trial

LEADERSFREEI

Chairman: Dr. Marty Leon, CRF, NY
 PI: Dr. Mitch Krucoff, Duke, Durham, NC
 EU co-PI: Dr. Philip Urban, Geneva, Switzerland

- Statistics: Stuart Pocock, School of Hygiene, London
- Project Management: Corie Diaz, Syntactx, NY
- Monitoring, CEC, Angio Corelab: CERC, Paris, Fr
- Data Management: Duke University, Durham, NC
- DSMB, Statistics: Cardiovascular Research Foundation, NY
- · Sponsor: Biosensors Research, USA





Drug-Filled Stent: Concept

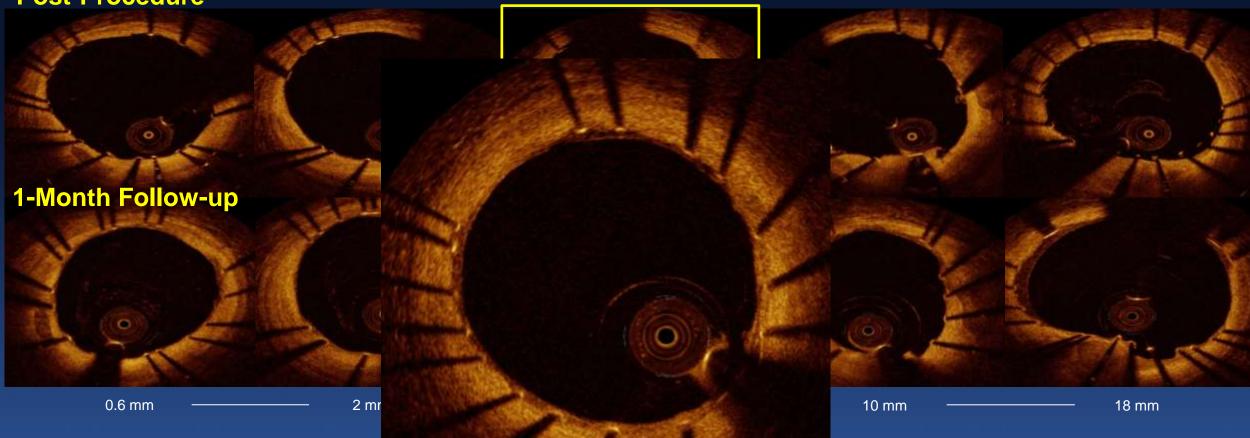
DFS is made from a polymer-free tri-layer wire

- Outer cobalt alloy layer for strength
- Middle tantalum layer for radiopacity
- Inner layer core material is removed and becomes a lumen that is filled with drug (sirolimus)

RevElution Case 20001-002

Post-Procedure

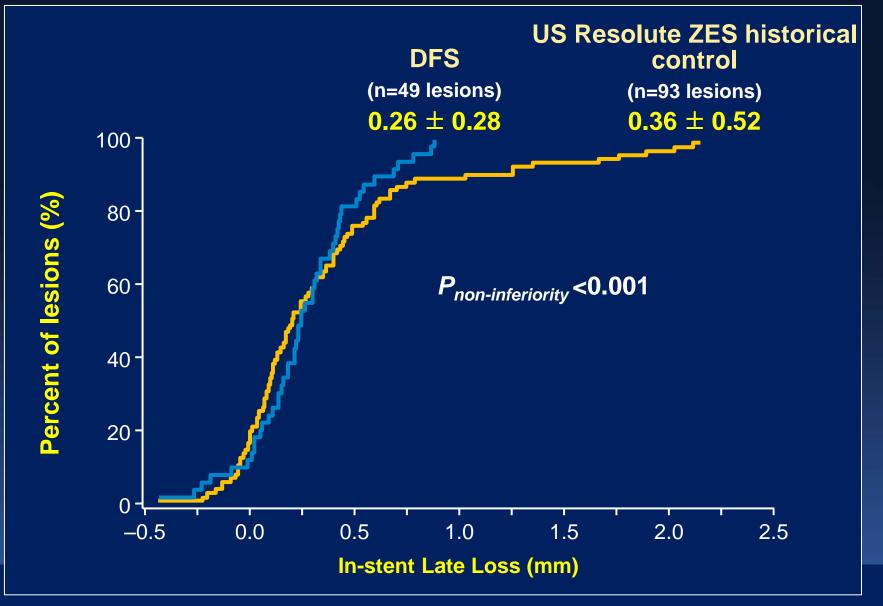
Age (years)	65	Diameter stenosis (%)
Gender	М	RVD (mm)
Diabetes	Y	Lesion length (mm)
Hypertension	Y	Pre-dilatation performed
		Stents implanted (n)


75

3.5

10

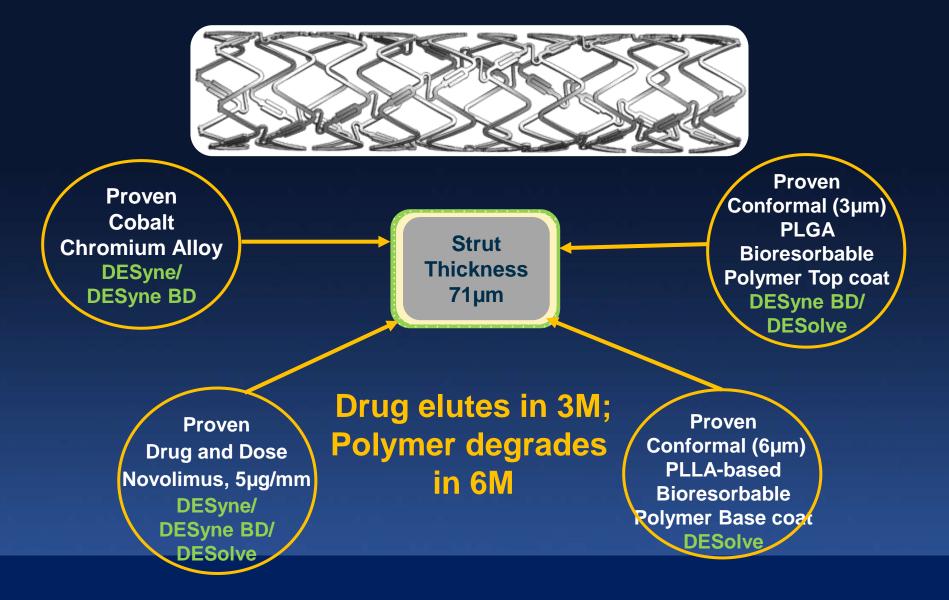
Y


1

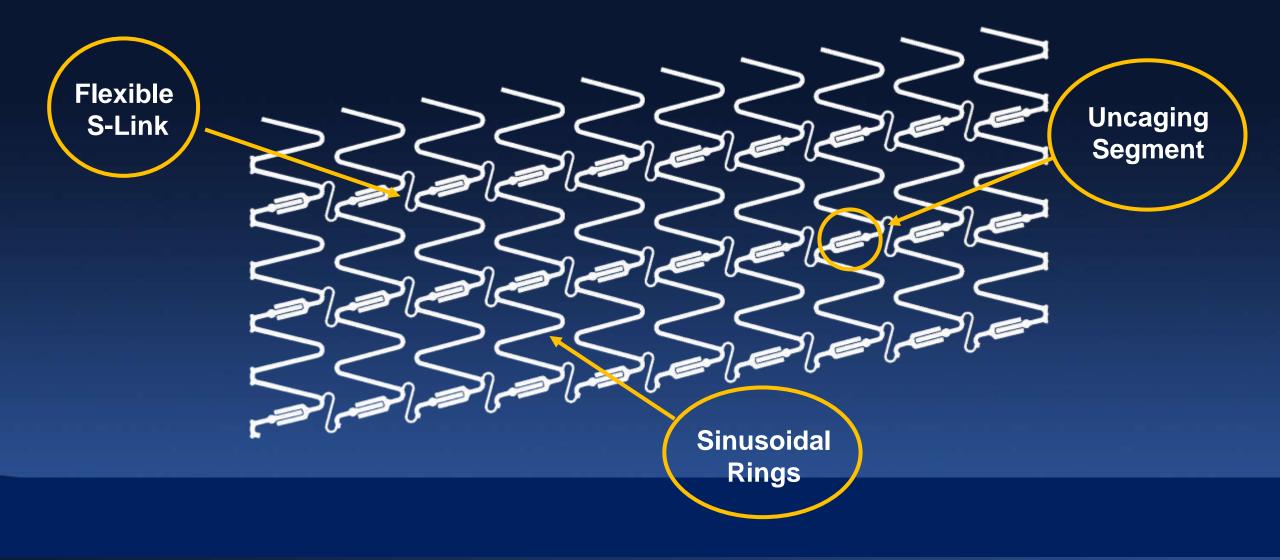
Smooth neointima

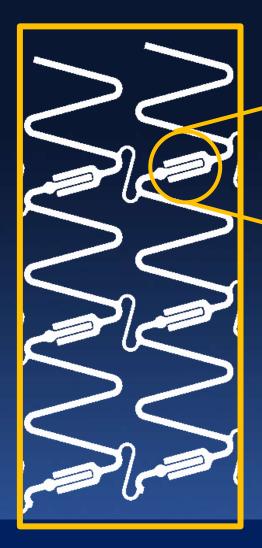
c/o Steve Worthley

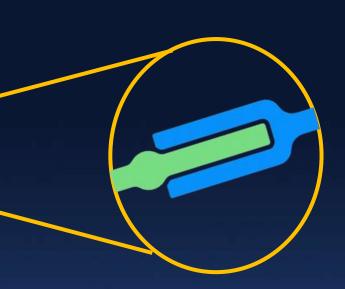
RevElution: In-stent Late Loss at 9 Mo


Worthley S et al. JACC Int 2017:on-line

Potential Disruption :


BP or no polymer at all: what is the clinical advantage beyond HBR?


Key Attributes of the DynamX BA-DES



DynamX is designed to match DES acute performance

DynamX is uniquely designed with "uncaging" segments

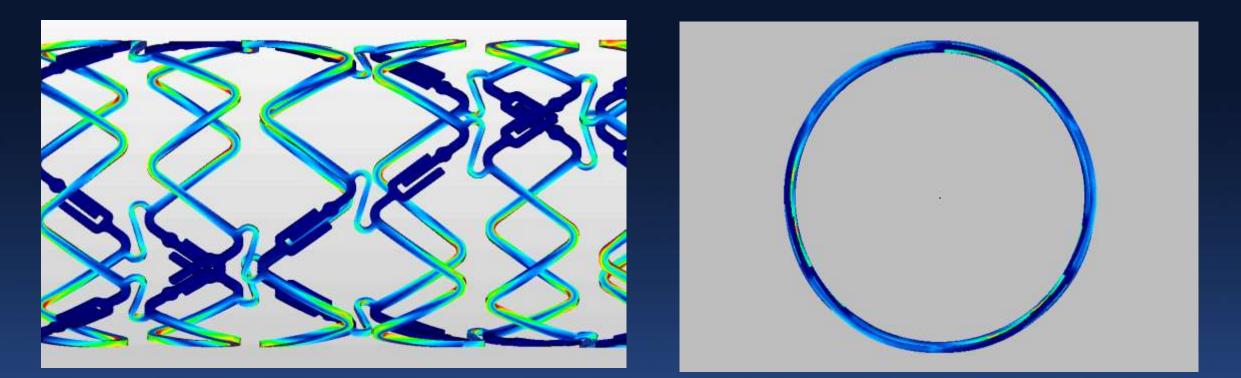
- 3 Uncaging segments per ring
- Located on stent struts (low stress areas)

DynamX uncaging elements are bonded together with bioresorbable polymeric (BP) material

 Uncaging elements are bonded by a conformal 6µ thick PLLA-based base coat and a conformal 3µ thick PLGA top coat

The uncaging elements are designed to remain intact through expansion/over expansion for approximately 6 months until biopolymer resorption

Bonded


The stent design maintains radial strength and crush resistance for at least 6 months - similar to current generation DES

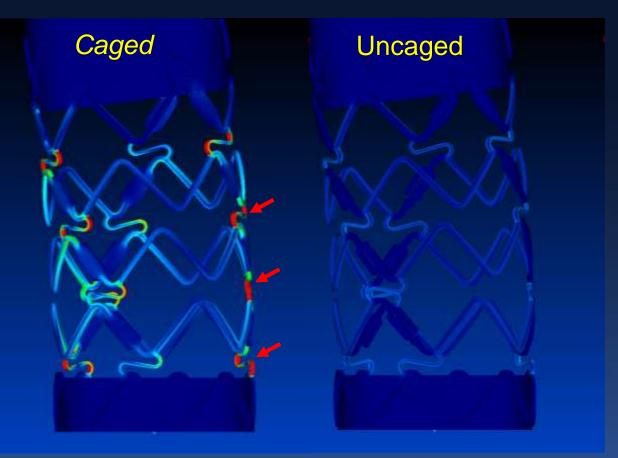
DynamX uncaging elements are bonded together with bioresorbable polymeric (BP) material


- Uncaging elements are bonded by a conformal 6µ thick PLLA-based base coat and a conformal 3µ thick PLGA top coat
- The uncaging elements are designed to remain intact through expansion/over expansion for approximately 6 months until biopolymer resorption
- The stent design maintains radial strength and crush resistance for at least 6 months - similar to current generation DES

DynamX Allows the Vessel to Resume Normal Pulsatile Motion

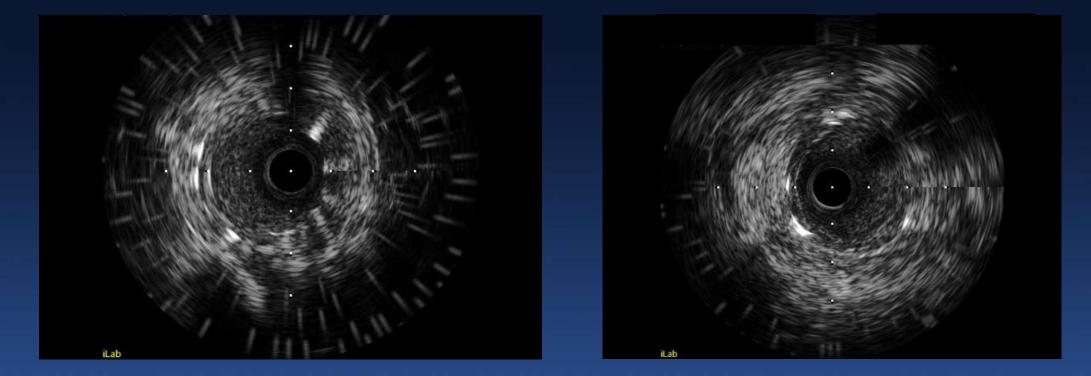
DynamX expands radially in synchrony with vessel pulsatility

DynamX Compliance > 2nd Gen DES



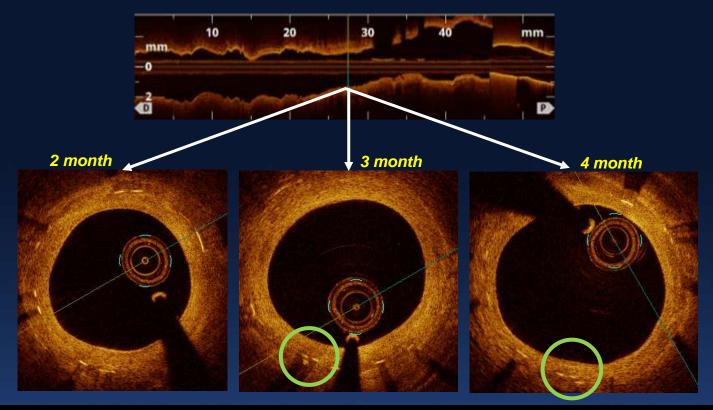
More green = greater compliance

DynamX stent has 10X the compliance of a caged DES


DynamX Improves Fracture Resistance

DynamX 90% reduction in maximum tensile stress reduces probability of geometric distortion and/or fracture

DynamX Restores Pulsatile Vessel Motion


DynamX stent in porcine coronary - IVUS imaging @ 60 days

DES stented coronary

DynamX stented coronary

DynamX Shows Adaptive Remodeling

Parameter*	2 month	3 month	4 month
Stent Area (mm ²)	7.20	8.19	8.30
Lumen Area (mm ²)	4.60	5.73	5.95
NIH area (mm²)	2.60	2.45	2.35

Preclinical Studies conducted at Accel LAB, Montreal, Canada

DynamX Stent Study

 Single de novo Coronary Artery Lesions

 Ref diam: 2.5-3.5mm, Lesion length: <14mm</td>

 3.0, 3.5mm diam; 14, 18mm lengths

 10 Sites, Belgium and Italy

 50 patients

 Clinical (MACE)

 30d
 6mo

 9mo
 1yr

 2yr
 3yr

 Angiography (QCA) and IVUS

Study Design: Non-randomized, consecutive enrolment into two subsets : A and B with either 6 or 9 month clinical and imaging follow-up

Principal Endpoints:

- Clinical: Target lesion failure; stent thrombosis at 6 months and 9m (subset B), 1–3 yrs
- QCA: In-stent late lumen loss, MLD, % DS at baseline and follow-up
- IVUS: Mean and min lumen, stent and vessel areas (post –procedure to FU); pulsatile motion analysis; malapposition

Potential Disruption :

DES with BRS benefits

